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During last several years, electron acceptors for organic sol-
ar cells (OSCs) have experienced three major innovations. The
first invention was a fused-ring electron acceptor (FREA), ITIC,
reported  by  Zhan et  al. in  2015,  which  consists  of  an  in-
dacenodithienothiophene  (IDTT)  donor  core  and  two  3-dicy-
anomethylene-1-indanone  (IC)  as  the  end-groups[1].  ITIC  cells
exhibited  comparable  performance  to  PC61BM  cells,  and  in-
spired  the  development  of  hundreds  nonfullerene  acceptors
(NFAs).  The  second  breakthrough  is  the  14.08%  power  con-
version  efficiency  (PCE)  delivered  by  a  low-bandgap  non-
fullerene  acceptor  COi8DFIC  with  strong  NIR  absorption,  inv-
ented  by  Ding et  al.[2, 3].  The  third  star  acceptor  is  Y6,  de-
veloped  by  Zou et  al. in  2019[4].  Y6  and  its  derivatives  (Y-
series NFAs) are very promising[5, 6]. Ding et al. developed poly-
mer  donor  D18  and  its  outstanding  derivatives[7−10],  and  the
D18:Y6 cells  gave a PCE of 18.22%[7],  which was the first  time
for OSCs to deliver PCEs over 18%.

The  core  of  Y6,  dithienothiophen[3,2-b]pyrrolobenzothi-
adiazole,  was derived from unit  DTPBT (Fig.  1),  which was re-
ported  by  Cheng et  al. in  2011[11, 12].  This  ladder-type  unit
fuses  central  electron-deficient  benzothiadiazole  (BT)  and
two  electron-rich  thiophenes  by  two  pyrroles,  and  it  endows
its copolymers with strong intermolecular π–π interaction, en-
hanced  light  absorption,  and  decent  photovoltaic  perform-
ance[12].  Zou et  al. developed  ladder-type  unit  dithieno[3,2-
b]pyrrolobenzotriazole (BZTP) and used it as the core of accept-
or BZIC[13]. BZIC presented broad absorption with a low optic-
al bandgap of 1.45 eV, high lowest unoccupied molecular orbit-
al  (LUMO)  energy  level,  and  strong  π–π  interactions,  and
HFQx-T:BZIC cells gave a PCE of 6.30%. Then, acceptor Y1 was
synthesized  by  replacing  two  thiophenes  of  BZIC’s  core  with
thieno[3,2-b]thiophenes[14].  With  octacyclic  dithienothiophen
[3,2-b]pyrrolobenzotriazole  as  the  D-A-D  core,  Y1  exhibited  a
red-shifted  absorption,  a  low  voltage  loss  of  0.57  V  and  a
short-circuit  current  density  (Jsc)  of  22.44  mA/cm2,  yielding  a
PCE  of  13.42%.  Zou et  al.  changed  benzotriazole  unit  of  Y1
to  benzothiadiazole  for  higher  charge  transport,  and  graf-
ted  alkyl  chains  at  the  terminals  of  the  D-A-D  core,  produ-
cing  Y5[15].  PBDB-T:Y5  cells  offered  a  PCE  of  14.1%.  Derivated
from Y5, Y6 was obtained by modifying the alkyl chains on thi-
eno[3,2-b]thiophenes,  and  fluorinating  the  terminals[4, 16].  Y6
employs  an  A-DA′D-A  molecular  configuration  with  ladder-

type core, fusing an electron-deficient BT in the middle. Y6 pos-
sesses  enhanced  intermolecular  and  intramolecular  interac-
tions  for  good  electron  mobility.  As  a  strong  electron-donat-
ing unit, N-alkyl pyrroles not only upshifted the highest occu-
pied  molecular  orbital  (HOMO)  energy  level  to  reduce  the
bandgap[17],  but  also  suppressed  over-aggregation  and  en-
hanced  solubility[18].  The  alkyl  chains  on  both  sides  of  DA′D
core  can  help  to  lock  conformation  to  enhance  the  order  of
molecular  stacking[19].  Y6  cells  exhibited  high  photocurrent,
less  non-radiative recombination and reduced voltage losses,
giving  a  PCE  of  15.7%[4, 20].  More  Y6  derivatives  were  de-
veloped in a short time, pushing the PCE to 19%[6].

Y-series  NFAs  present  universal  compatibility  and  excel-
lent  photovoltaic  performance.  First,  they  always  exhibit
pretty  high  PCEs  when  combining  with  many  polymer
donors,  even  some  of  them  were  designed  to  match
fullerene  acceptors  or  ITIC  derivatives[5].  Second,  they  have
been  used  in  almost  all  high-performance  OSCs,  ternary  or
all-small-molecule devices (SM-OSCs)[21, 22]. Some efficient poly-
mer  acceptors  were  developed  by  polymerizing  Y-series
NFAs,  and  over  17%  PCEs  from  these  all-polymer  solar  cells
(all-PSCs) were delivered[23−25].

In summary, to enhance PCE further, the electron mobilit-
ies  for  Y-series  NFAs  need  to  be  improved,  and  the  energy
loss  needs  to  be  minimized.  We  should  understand  well  the
relationship  between  molecular  structures  and  non-radiative
recombination[26].  To  pave  the  road  to  commercialization,
more  efforts  should  be  put  into  molecular  design  to  invent
more high-performance acceptors and donors. 
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Fig. 1. The origin and evolution of Y6 structure.
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